首页> 外文OA文献 >Componential coding in the condition monitoring of electrical machines Part 1: principles and illustrations using simulated typical faults
【2h】

Componential coding in the condition monitoring of electrical machines Part 1: principles and illustrations using simulated typical faults

机译:电机状态监测中的成分编码第1部分:使用模拟典型故障的原理和说明

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper (Part 1) describes the principles of a novel unsupervised adaptive neural network anomaly detection technique, called componential coding, in the context of condition monitoring of electrical machines. Numerical examples are given to illustrate the technique's capabilities. The companion paper (Part 2), which follows, assesses componential coding in its application to real data recorded from a known machine and an entirely unseen machine (a conventional induction motor and a novel transverse flux motor respectively). Componential coding is particularly suited to applications in which no machine-specific tailored techniques have been developed or in which no previous monitoring experience is available. This is because componential coding is an unsupervised technique that derives the features of the data during training, and so requires neither labelling of known faults nor pre-processing to enhance known fault characteristics. Componential coding offers advantages over more familiar unsupervised data processing techniques such as principal component analysis. In addition, componential coding may be implemented in a computationally efficient manner by exploiting the periodic convolution theorem. Periodic convolution also gives the algorithm the advantage of time invariance; i.e. it will work equally well even if the input data signal is offset by arbitrary displacements in time. This means that there is no need to synchronize the input data signal with respect to reference points or to determine the absolute angular position of a rotating part.
机译:本文(第1部分)在电机状态监测的背景下,介绍了一种称为分量编码的新型无监督自适应神经网络异常检测技术的原理。数值示例说明了该技术的功能。随后的伴随论文(第2部分)评估了分量编码在应用到从已知机器和完全看不见的机器(分别为常规感应电动机和新型横向磁通电动机)记录的真实数据中的应用。分量编码特别适用于尚未开发特定于机器的定制技术或以前没有监控经验的应用。这是因为分量编码是一种无监督的技术,可在训练过程中导出数据的特征,因此既不需要标记已知故障,也不需要进行预处理以增强已知故障特性。相对于更熟悉的无监督数据处理技术(例如主成分分析),成分编码提供了优势。另外,可以通过利用周期性卷积定理以计算有效的方式来实现分量编码。周期性卷积还使算法具有时不变性的优势。即,即使输入数据信号在时间上任意偏移,它也将同样有效。这意味着无需将输入数据信号相对于参考点同步或确定旋转部件的绝对角度位置。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号